acid.		
In bo	oth reactions one of the products is copper chloride.	
(a)	Describe how a sample of copper chloride crystals could be made from copper carbonate and dilute hydrochloric acid.	
		(4)
(b)	A student wanted to make 11.0 g of copper chloride.	
	The equation for the reaction is:	
	$CuCO_3 + 2HCI \rightarrow CuCl_2 + H_2O + CO_2$	
	Relative atomic masses, A_r : H = 1; C = 12; O = 16; Cl = 35.5; Cu = 63.5	
	Calculate the mass of copper carbonate the student should react with dilute hydrochloric acid to make 11.0 g of copper chloride.	
	Mass of copper carbonate =g	(4)

Q1.A student investigated the reactions of copper carbonate and copper oxide with dilute hydrochloric

(c)	The percentage yield of copper chloride was 79.1 %.	
	Calculate the mass of copper chloride the student actually produced.	
	Actual mass of copper chloride produced = g	(2)
		(2)
(d)	Look at the equations for the two reactions:	
	Reaction 1 $CuCO_3(s) + 2HCl(aq) \rightarrow CuCl_2(aq) + H_2O(l) + CO_2(g)$	
	Reaction 2 $CuO(s) + 2HCI(aq) \rightarrow CuCI_2(aq) + H_2O(I)$	
	Reactive formula masses: $CuO = 79.5$; $HCI = 36.5$; $CuCI_2 = 134.5$; $H_2O = 18$	
	The percentage atom economy for a reaction is calculated using:	
	Relative formula mass of desired product from equation × 100 Sum of relative formula masses of all reactants from equation	
	Calculate the percentage atom economy for Reaction 2.	
	Percentage atom economy = %	(3)

(e) The atom economy for Reaction 1 is 68.45 %.

Compare the atom economies of the two reactions for making copper chloride.

Give a reason for the difference.	
	(1)
	(Total 14 marks)

Q2. Aspirin tablets have important medical uses.

A student carried out an experiment to make aspirin. The method is given below.

- 1. Weigh 2.00 g of salicylic acid.
- 2. Add 4 cm³ of ethanoic anhydride (an excess).
- 3. Add 5 drops of concentrated sulfuric acid.
- 4. Warm the mixture for 15 minutes.
- 5. Add ice cold water to remove the excess ethanoic anhydride.
- 6. Cool the mixture until a precipitate of aspirin is formed.
- 7. Collect the precipitate and wash it with cold water.
- 8. The precipitate of aspirin is dried and weighed.

(a)	The equation for this reaction is shown below.
	$C_7H_6O_3$ + $C_4H_6O_3$ \rightarrow $C_9H_8O_4$ + CH_3COOH salicylic acid aspirin
	Calculate the maximum mass of aspirin that could be made from 2.00 g of salicylic acid
	The relative formula mass (M_r) of salicylic acid, $C_7H_6O_3$, is 138
	The relative formula mass (M _r) of aspirin, C ₉ H ₈ O ₄ , is 180

	Maximum mass of aspirin =g	(2)
(b)	The student made 1.10 g of aspirin from 2.00 g of salicylic acid.	
	Calculate the percentage yield of aspirin for this experiment.	
	(If you did not answer part (a), assume that the maximum mass of aspirin that can be made from 2.00 g of salicylic acid is 2.50 g. This is not the correct answer to part (a).)	
	Percentage yield of aspirin = %	(2)
(c)	Suggest one possible reason why this method does not give the maximum amount of aspirin.	
		(1)
(d)	Concentrated sulfuric acid is a catalyst in this reaction.	
	Suggest how the use of a catalyst might reduce costs in the industrial production of aspirin.	
	(Total 6 n	(1) narks)

	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
	$N_2(g) + 3\Pi_2(g) \leftarrow 2N\Pi_3(g)$
(i)	What is the source of the nitrogen?
/::\	Why does increasing the prossure increase the chance of malecules of hydrogen
(ii)	Why does increasing the pressure increase the chance of molecules of hydrogen reacting with molecules of nitrogen?
(iii)	The percentage yield of ammonia is the percentage, by mass, of the nitrogen and hydrogen which has been converted to ammonia. Calculate the mass, in tonnes, of
	ammonia which can be produced from 90 tonnes of hydrogen when the percentage yield is 50%. The relative atomic masses are: H 1; N 14.
	Show clearly how you get to your answer.
	Mass = tonnes

(iii) Suggest what changes the chemical engineers should make to both the temperature and the pressure to **increase** the percentage yield of ammonia.

Temperature

	Pressure	(1)
(iv)	How can the rate of ammonia production be increased without changing the temperature or pressure or the mass of hydrogen and nitrogen?	
		(1)

- (c) About four-fifths of ammonia production is used to produce fertilisers. One of them is known as NPK. It is made in the following way.
 - Some ammonia is converted to nitric acid which is then mixed with phosphoric acid.
 - The mixture is neutralised with more ammonia and the solution is partly evaporated.
 - Potassium chloride is added to form granules.
 - The granules are coated to make the fertiliser free-flowing.

Complete the flow-chart for the production of NPK by writing in the names of the correct chemicals in the **six** boxes.

